Skip to main content
Home

Main navigation

  • REC Home
  • Apply
    • REC Services Rate Card & Policies
    • LPFM Construction Completed
    • LPFM License Modification
    • New FM Booster Station
    • New Class D FM Station in Alaska
    • New Low Power FM (LPFM) Station
  • Initiatives
    • RM-11846: Rural NCE Stations
    • RM-11909: LP-250 / Simple 250
    • RM-11952: Translator Reform
    • RM-11843: 8 Meter Ham Band
    • PACE - LPFM Compliance
  • Services
  • Tools
    • Today's FCC Activity
    • Broadcast Data Query
    • Field strength curves
    • Runway slope
    • Tower finder
    • FM MODEL-RF Exposure Study
    • More tools
    • Developers - API
  • LPFM
    • Learn about LPFM
      • Basics of LPFM
      • Self Inspection Checklist
      • Underwriting Compliance Guide
      • Frequently Asked Questions
      • FCC Rules for LPFM
      • HD Radio for LPFM
      • Transmitters certified for LPFM
      • Interference from FM translators
      • RadioDNS for LPFM Stations
    • 2023 Window REC Client Portal
    • myLPFM - LPFM Station Management
    • LPFM Station Directory
    • Spare call signs
    • REC PACE Program
    • More about LPFM
  • Reference
    • Pending FCC Applications
    • FCC Filing Fees
    • Radio License Renewal Deadlines
    • FCC Record/FCC Reports
    • Pirate Radio Enforcement Data
    • Premises Info System (PREMIS)
    • ITU and other international documents
    • Recent FCC Callsign Activity
    • FCC Enforcement Actions
    • Federal Register
    • Recent CAP/Weather Alerts
    • Legal Unlicensed Broadcasting
    • More reference tools
  • LPFM Window
  • About
    • REC in the Media
    • Supporting REC's Efforts
    • Recommendations
    • FCC Filings and Presentations
    • Our Jingles
    • REC Radio History Project
    • Delmarva FM / Riverton Radio Project
    • J1 Radio / Japanese Broadcasting
    • Japan Earthquake Data
    • REC Systems Status
    • eLMS: Enhanced LMS Data Project
    • Open Data at REC
    • Our Objectives
  • Contact

Breadcrumb

  • Home

Operational Status

Michi on YouTube

Most popular

fcc.today - real time updates on application activity from the FCC Media Bureau.  fccdata.org - the internet's most comprehensive FCC database lookup tool.  myLPFM.com - Low Power FM channel search and station management tool.  REC Broadcast Services - professional LPFM and FM translator filing services. 

Other tools & info

  • Filing Window Tracking
  • Enforcement Actions
  • REC Advisory Letters
  • FAQ-Knowledge Base
  • U/D Ratio Calculator
  • Propagation Curves
  • Runway Slope/REC TOWAIR
  • Coordinate Conversion
  • PREMIS: Address Profile
  • Spare Call Sign List
  • FCC (commercial) filing fees
  • Class D FM stations in Alaska
  • ARRR: Pirate radio notices
  • Unlicensed broadcasting (part 15)
  • FMmap - broadcast atlas
  • Federal Register
  • Rate Card & Policies
  • REC system status
  • Server Status
  • Complete site index
Cirrus Streaming - Radio Streaming Services - Podcasting & On-demand - Mobile Apps - Advertising

Industry News

Real-World Tests Make Business Case for MA3

Radio World
5 years 5 months ago

The authors are senior broadcast engineer for Hubbard Radio and manager of broadcast engineering at Xperi Corp., respectively. WWFD is serving as a real-world testbed for the MA3 mode of HD Radio, which the authors say provides more coverage and less adjacent-channel interference than hybrid MA1.

Over the past 50 years, many AM stations struggled to continue to serve their listeners as they moved into the suburbs and exurbs, far from the stations’ transmitter sites. And the weaker their signals became, the more vulnerable they were to noise from power lines, TVs and other electrical sources.

In Part 1 of this article we explored why today’s AM HD Radio technology hasn’t done much to level the playing field with FM, satellite and streaming services such as Spotify. One major reason is because the current system uses the MA1 waveform. Although that provides HD Radio capabilities such as high-fidelity audio and track data, it may do so in only part of a station’s coverage area.

An HD Radio screen display of WWFD’s PSD.

Another drawback is that MA1’s digital carriers require three times more bandwidth than the analog signal, so they create more adjacent-channel interference — an annoyance that’s among the reasons why people choose alternatives such as FM, SiriusXM or Pandora. By providing a better listening experience for some stations, MA1 actually undermines others.

The MA3 waveform avoids those drawbacks because it’s an all-digital signal, whereas MA1 is a hybrid of analog and digital. MA3 minimizes the interference problem and extends HD Radio’s capabilities to the vast majority of an AM station’s coverage area.

Since July 16, 2018, WWFD in Frederick, Md., has served as a testbed that vendors, broadcasters and the FCC can use to understand how upgrading a station to MA3 affects antenna systems, transmitters and engineering practices. Our previous article described the upgrade process in detail, both from a technical and a business perspective.

This article describes the technique and equipment used to measure power coming out of the transmitter. It also discusses the extensive daytime and nighttime drive-test results conducted in summer 2019, which found that both the core and enhanced carriers are received out to the station’s 0.5 mV daytime contour.

These and other real-world tests suggest that there’s a solid business case for implementing MA3. In fact, even though only about 25% of vehicle radios in the Frederick area can tune in WWFD’s MA3 signal, the station already acquired enough listeners to make its first appearance in the Spring 2019 ratings book. The ratings also suggest that listeners are seeking out WWFD because it offers stereo audio, album artwork and other data. Finally, although WWFD is a rimshot into the D.C. market, some weeks its ratings have exceeded those of 50 kW WFED.

ADDITIONAL DRIVE TEST RESULTS

Qualitative field strength measurements used the station’s existing Potomac Instruments FIM-21 meter, which was checked against an FIM-4100, which is specifically designed to handle the MA3 mode. Drive tests used multiple vehicles’ factory OEM radios.

In the initial drive tests:

• Under ideal daytime conditions, the MA3 primary/core carriers could be decoded down to the 0.1 mV contour, as confirmed via reception reports and drive testing at or near Harrisburg, Pa., Breezewood, Pa., and Cambridge, Md.
• Critical hours propagation phenomena typically reduced reliable coverage to the 0.5 mV contour.
• Nighttime MA3 reception generally followed the station’s nighttime interference free (NIF) contour: Wherever an analog carrier-to-noise ratio of 20 dB is achieved, the MA3 carrier will generally be received. Early evening reception goes well beyond the NIF. As co-channel skywave interference increases during the evening, coverage is reduced to the NIF. In the station’s 2.0 mV contour, in-vehicle reception was reliable, without observed dropouts in either the Frederick urban core or underneath bridges. Reliable urban performance is particularly important for competing with satellite, which often has dropouts even in cities with terrestrial repeaters.

The latest round of drive tests, conducted in summer 2019, showed that the primary/core and enhanced carriers are good out to 0.5 mV daytime contour. This coverage area has a population of nearly 2.8 million people.

This means WWFD’s MA3 capabilities — the stereo audio and album artwork that enable aural and visual parity with FM HD, streaming audio and SiriusXM — are effective for attracting and retaining listeners throughout the vast majority of its service area. By extension, those MA3 capabilities also will help the station attract and retain advertisers.

The core carrier typically dropped out at the 0.1 mV daytime contour, with a few exceptions. For example, at one point while driving east into metro Baltimore, the core carrier failed at 0.2 mV due to electrical noise. However, an analog signal would have been completely unintelligible at this point due to the buzz that few listeners would tolerate.

WWFD AM daytime pattern — all digital.

Terrain also proved to be a factor. For example, in the mountains near Rippon, West Virginia, the core signal failed around 0.25 mV. The reason is unclear, but the result is relatively insignificant because at that point, an analog-only signal would have been very weak. So, most listeners might have abandoned the station at that point anyway.

In the latest round of nighttime drive testing, core and enhanced services were received to half the value of the station’s NIF contour. For WWFD the NIF zone extends to the 10.8 mV contour, and half of that value is 5.4 mV. Co-channel skywave interference appears to limit nighttime service to this contour. The core-only carriers, being stronger, may continue beyond this contour but should not be considered marketable coverage, as interference may cause reception to vary both nightly and seasonally.

WWFD AM nighttime pattern — all digital.

WWFD will conduct a second round of drive testing in early 2020 because propagation conditions are significantly different in the dead of winter. The increased skywave interference probably won’t affect the half NIF (5.4 mV) area, but it could reduce coverage beyond that contour.

THREE POWER MEASUREMENT OPTIONS

All-digital power can’t be measured using traditional analog AM practices. For example, MA3’s peak-to-average ratio is significantly higher than that of analog AM, so the transmitter’s power level meter may read inaccurately. Also, if the transmitter isn’t optimized for MA3 mode, the peak-to-average ratio may be reduced, and a different power level reading may result than if the transmitter had been optimally adjusted.

As a result, the WWFD experiments included identifying a new procedure to verify that transmitters are operating at licensed power when in MA3 mode. Three methods were considered:

• A channel power measurement with a spectrum analyzer on the transmitter’s RF monitor port using an unmodulated carrier at licensed power (verified with the station’s existing base current and common point meters), and verifying the same channel power when the transmitter is placed in the MA3 mode.
• A procedure identical to that above, but instead utilizing a calibrated average power meter.
• Replacing the Common Point current meter and each tower base current meter with a thermocouple-type RF ammeter. (Remote monitoring systems connected to pre-existing meters could then be recalibrated to what the thermocouple meter reads.)

AM stations commonly use transformer-coupled RF ammeters, but they aren’t viable for measuring MA3’s OFDM carriers, which use quadrature amplitude modulation and vary by the type of information sent. Sometimes most or all of the carriers are in phase, which would raise the peak power tremendously. Other times, the carriers could be mostly or totally out of phase with one another, thus reducing the power to zero. As a result, average power is the best metric.

The third technique proved to be the best option, for several reasons:

• A thermocouple-type RF ammeter is a device that many AM stations already have. Those that don’t can purchase one for, at most, a few hundred dollars — unlike a spectrum analyzer. In fact, the WWFD tests used a Simpson 0-15A that was purchased pre-owned for $50. These and other models are widely available online from sellers such as test-and-measurement surplus equipment dealers and even at hamfests.
• These devices also are easy to implement. At WWFD, the Simpson 0-15A was mounted on a fiberglass J-plug inserted into the J-plug between the output of the tower ATU and the tower itself. This is where the current transformer for the base current measurement is located.
• Reading and interpretation are straightforward. After the meter was inserted into WWFD’s system, a baseline reading was obtained by operating the transmitter with an unmodulated carrier with no QAM carriers present. The RF ammeter and current transformer readings should match, which means the station is operating at licensed power. Next, the QAM carriers are turned on, and the RF ammeter reading should be the same as with an unmodulated carrier. If the base current meter is a diode detector, such as a Delta TCA type meter, the reading will be slightly lower.

The WWFD transmitter AUI screen while operating in the all-digital AM mode.

WWFD’s tests used all three measurement methods because a power meter and spectrum analyzer were available. All three methods also proved to be accurate in an MA3 environment. For station owners, equipment manufacturers, consultants and other members of the broadcast ecosystem, the bottom line is that the choice comes down to equipment availability, budget and personal preference. But for most stations, measurement at the transmitter output with a thermocouple-type RF ammeter likely will be the most economical option.

OPTIMIZING ANTENNA HELPS WITH SIGNAL AND LISTENER ACQUISITION

Since Part 1 of this series published in October, the daytime antenna system was further optimized using a design provided by Kintronic Labs. The goal was to shift the day pattern from its upward position to the optimal load for the transmitter (“cusp left”), as well as to provide additional broadbanding of the antenna system. This was achieved by replacing the capacitor in the very long transmission line with a second T network.

This change provided several benefits, starting with presenting the transmitter with the best possible load (also referred to as “Hermetian symmetry”), as well as tuning out the transmission line’s inductance. Additional benefits were surprising. Radios were able to acquire the core digital signal faster: within one frame (1.5 seconds). When the digital signal was lost (such as under bridges or near major power lines), it recovered faster.

For stations that decide to implement MA3, these kinds of network changes are worth considering because they improve the listening experience. The less frustration and annoyance that audiences encounter, the less likely they are to tune away. Faster acquisition times help them find a station in the first place as they’re casually tuning around. Large, loyal audiences attract more advertising revenue, which helps make the business case for upgrading to MA3.

Another potential business factor is the possibility of adding HD2 on MA3. This could be particularly valuable for AM stations in smaller markets by providing an additional revenue stream. That income could further offset MA3 upgrade costs. The license fee also will be waived for stations that turn on MA3 full-time.

MA3 WILL HELP REVITALIZE AM

Each AM station has its own set of marketplace considerations and business challenges, which is why there can never be an industry-wide silver bullet. MA3 is no exception to that rule. However, it will be a viable option for many stations.

While an AM station with an existing, profitable analog audience is not likely to be among the first to switch to digital, it should be noted that analog AM broadcasting, in general, is not a growth medium. In-home listening is migrating to streaming devices such as smart speakers, and in-car listening of terrestrial analog broadcasts is being challenged by the new options offered in-dash.

Trends in receiver designs seem to be converging around “tuning” by visual metadata: specifically, a thumbnail preset. A receiver of the future will likely scan the bands for available content and display the available options. When pressing an icon for a favorite station, it may not be immediately obvious whether the source is AM, FM, satellite or a stream. AM stations must be digital to transmit the necessary metadata and achieve the required audio fidelity. All-digital AM is likely to be one option “under the hood” of delivering audio content to future receivers.

For the immediate future, AM stations converting to all-digital achieve aural and visual parity with other services in the dash: FM HD, satellite and streaming. Additionally, having a desirable product with a pleasant user experience in the dash will cause car manufacturers to take notice and include AM (and FM) HD in their standard offerings.

It’s important to note that with the possible exception of electric vehicles, when consumers get AM HD, they get analog AM, too. That “package deal” should benefit legacy stations by keeping the medium in the dashboard. It costs money to keep AM in the car (in terms of hardware and noise-suppression techniques), but by going digital, broadcasters on the “senior” band will cause receiver manufacturers to take notice by showing that AM can be a growth medium, as well. In short, going digital reinforces the presence of AM in the car.

Dave Kolesar, CBT, CBNT, recently recieved the Radio World Excellence in Engineering Award for 2019–2020.

Comment on this or any story. Write to radioworld@futurenet.com.

 

WWFD: A Station Overview

Owned by Hubbard Radio, WWFD runs an adult album alternative format on 820 kHz. It operates 4.3 kW non-directional during the day and switches to a 430 W two-tower array at night.

WWFD also has a 160 W translator, W232DG, on 94.3 MHz. Most WWFD listeners migrated to the translator after it signed on in July 2017, which made it feasible from a business perspective to replace the analog carrier with MA3 on an experimental basis.

The FCC granted Hubbard a one-year STA to operate WWFD in MA3 mode, a switch that took place on July 16, 2018. Getting to that point took a lot of time, effort and collaboration with Kintronic Labs and Cavell, Mertz and Associates for the antenna system, and Broadcast Electronics, Nautel and GatesAir for the transmitters. Xperi Corp. lent its expertise to set up the digital transmitters, and to verify the operation of the antenna system. The STA has since been renewed.

The post Real-World Tests Make Business Case for MA3 appeared first on Radio World.

Dave Kolesar and Mike Raide

WorldDAB Releases Aftermarket Devices Guidelines

Radio World
5 years 5 months ago

WorldDAB has published the first version of its Aftermarket Devices Guidelines.

Designed by the WorldDAB Aftermarket Devices Working Group, the purpose of the document is to improve the user experience of aftermarket devices, including those for DAB+ digital radio.

Intended for manufacturers, WorldDAB says these guidelines are based on WorldDAB User Experience Group research and incorporate “allowances and changes in line with the nature of AMDs.”

Featuring directions on domains in relation to AMDs, including for instance, user interface; device connection; functionality; power; service lists; car display; service following and antennas, the document provides a foundation for manufacturers of aftermarket devices and adaptors. WorldDAB plans to update the guidelines as necessary based on market developments and future improvements.

“These Aftermarket Devices Guidelines were developed to help manufacturers better understand how to integrate DAB+ digital radio devices into vehicles that are already on the road,” said Jørn Jensen, retiring chairman of the WorldDAB Aftermarket Devices Working Group.

“The aftermarket sector has seen a significant increase in demand over the last few years. More drivers are looking to bring the extra choice and better quality of DAB+ into older cars, which do not have digital radio as standard. These guidelines were created to help achieve this in the best possible way.”

The Aftermarket Devices Guidelines is available for download here.

The post WorldDAB Releases Aftermarket Devices Guidelines appeared first on Radio World.

Marguerite Clark

Towering Calendar

Radio World
5 years 5 months ago

Start off the new year off right. Now available, Scott Fybush’s famed Tower Site Calendar for the year 2020. As always, each month features a radio broadcast tower in a gorgeous setting.

This 19th edition takes a trip across the pond adding a tower in the United Kingdom.

Calendars are $20 plus shipping, and tax if you live in New York state. For info contact Lisa Fybush or call 1-585-442-5411.

The post Towering Calendar appeared first on Radio World.

RW Staff

Running a Radio Station Inside a Tesla 3

Radio World
5 years 5 months ago

OSLO, Norway — On Sept. 11, Soundware Norway proved that it was possible to run a live radio broadcast using the touchscreen monitor inside a Tesla 3 electric car.

The Tesla 3’s in-car monitor, showing the web page that controls program rundown, playout and the audio mixer. All photos: Soundware Norway

Inside the Tesla parked outside Soundware Norway’s Oslo headquarters, Soundware Sales Manager Ketil Morstøl managed a mock live broadcast using the Tesla 3’s web browser, which accesses the web via the car’s built-in LTE wireless modem. The browser was connected to a website hosting Soundware’s DHD user interface that remotely controls a DHD-equipped radio production facility, and David Systems’ TurboPlayer playout system.

Using the touchscreen display — which showed a standard radio music playlist in the center of the screen and standard on-air control buttons to switch/fade between audio sources and turn microphones on and off on the right side — Morstøl cycled through the functions just as if he was doing a live radio broadcast.

The Soundware Norway interface set to the remote studio mixer control screen.

“As a proof that we have bidirectional audio, we can switch on the microphone and we will actually see the PPM meter showing the input signal,” said Morstøl in a YouTube video entitled “Soundware Norway to Do BroadCARst as World First!” (Available here.) The microphone was sourced from Morstøl’s own smartphone, which connected to the web browser by taking a photo of an onscreen QR code.

MORE THAN A STUNT

Given that this “broadCARst” was staged to promote Soundware Norway’s appearance at IBC2019, it is easy to dismiss this demonstration as a publicity stunt. But the broadCARst was much more than that: It showed that radio talent can now take remote control of their station’s live production facilities from any location and run the broadcast as if they were actually in studio themselves.

Soundware Norway was able to do this demo inside a Tesla 3 because this car has a built-in web browser on its touchscreen display. This same functionality can be accessed using a web-connected laptop, tablet, or smartphone. Had he chosen to, Morstøl could have run this demo on a Samsung Family Hub refrigerator — because this fridge has a web-connected touchscreen display built in. “We have pictures of us on Linkedin.com, running a radio studio remotely inside a Boeing 747 at 30,000 feet,” he said.

A closer view of the screen, showing the music playlist and mixer controls.

“You can do everything remotely using our DHD interface that you can do in the studio,” Morstøl added. “This goes far beyond choosing songs and opening the microphones. You can actually access the mixing desk in the studio, and make and receive telephone calls. We have even integrated an audio codec into the system so that transporting audio data across the web to the studio is easily enabled.”

MORE THAN A RADIO REMOTE

Broadcasting radio programs from remote locations is nothing new. The first “radio remote” is believed to have taken place in 1924, when WHN (New York City) station manager Nils Granlund leased Western Union telegraph lines to connect his station to local jazz nightclubs.

Producing complex radio broadcasts from remote locations is also standard fare in the broadcasting industry, where fully mixed programs are relayed back to the studio for direct airing. So if Soundware Norway’s DHD system did nothing more than this — turning a Tesla 3 into a radio production studio on wheels — it would be impressive, but not ground-breaking.

However, the Soundware demo showed that the Tesla 3 could serve as a web-based interface for complete remotely controlled radio production; just as the other web-connected devices cited above could.

And this is where the demo gets interesting — because it proves that physical radio production facilities operated by broadcasters who have to be on-site are no longer necessary. Rather than building a 24/7 radio station whose production facilities are only used for live broadcasts at peak hours and otherwise left unused, Soundware’s production model makes it possible to use an unmanned “production hub” whose equipment is accessed remotely as needed, and by multiple users/stations at different times of the day.

The Soundware Norway system can also be remotely controlled by a smartphone.

“Rather in a specific radio station investing in production hardware that is unused most of the day, you could share the costs of hardware across broadcasters and all use a common facility,” said Morstøl.

The Soundware Norway production system also supports physical faders; as shown by Ketil Morstøl.

To cope with the fact that radio broadcasters need production facilities for live morning shows, stations operating in different time zones around the world could do the sharing. As long as Station A is four hours (time zones) ahead of Station B, both could use the same remote production facility sequentially for their four hour-long morning shows.

This same function could be provided by third-party vendors. They could create cloud-based virtual production facilities that radio stations could access remotely, with the mixed radio feeds going directly to their transmitter sites via IP.

Should this come to pass, radio stations would no longer need physical radio production facilities. They could reduce their operations to sales/administration offices and transmitter/antenna sites, with engineering staff located there to handle the remaining physical aspects of radio broadcasting.

This said, there’s no reason that on-air talent could not broadcast from the sales/administration office using a laptop, tablet, or smartphone to maintain the public fiction of actually broadcasting from a radio studio. But it would be a fiction, because the creation of fully remote radio production has made the continued existence of physical radio studios optional at the very least, and unnecessary at most.

This may seem a lot to conclude from a mock radio broadcast from inside a Tesla 3. But the far-reaching implications of Soundware Norway’s demo are there for all to see.

The post Running a Radio Station Inside a Tesla 3 appeared first on Radio World.

James Careless

Orban Optimod-PC 1101e Simplifies Radio Streaming

Radio World
5 years 5 months ago

The Optimod-PC 1101e audio processing card from Orban is especially designed for use with digital transmission media such as radio streaming channels.

The unit comes with a variety of presets, speech/music detection and PreCode Technology to minimize artifacts caused by low bitrate codecs and according to the company is easy to set up.

It also features a digital mixing function, which Orban says, is “crucially important for an internet radio broadcaster who needs to control commercial content and insertion.”

Optimod-PC lets users mix an analog source, two digital sources, and two WAV sources. For example, the processor allows users to run a playout system on one’s computer while using the three hardware inputs for a live microphone feed, commercial insert and network insert.

Alternatively, operators can run the commercial insert playout software on the same computer as the main playout system, using Optimod-PC’s second WAV input to separately route the outputs of the two playout systems to the card.

Orban adds that Optimod-PC is useful for users with multiple streams because it allows them to load one computer with as many Optimod-PC cards as there are free PCI slots, each card handling one stereo program.

For information, contact Orban in Germany at +49-7141-2266-0 or visit www.orban.com.

The post Orban Optimod-PC 1101e Simplifies Radio Streaming appeared first on Radio World.

RW Staff

Inside the Dec. 11 Issue of RW Engineering Extra

Radio World
5 years 5 months ago

Great content strictly for engineers, including D-I-Y and first-person articles from Frank McCoy, Wayne Pecena, Todd Dixon and Cris Alexander, as well as insights by Dave Kolesar and Mike Raide about their real-world research into all-digital medium-wave transmission.

BAKING WITH PI
Pi for Everyone and Everything

What’s more fun than being able to solve a problem by combining ideas from your own brain with the power of a single-board computing platform? Todd Dixon has the first in an ongoing series of articles.

DIGITAL RADIO
Real-World Tests Make Business Case for MA-3

Continuing a report they began in the October issue of RWEE, Kolesar and Raide describe the technique and equipment used to measure power from the WWFD transmitter, and describes the day- and nighttime drive tests of the station’s all-digital signal.

 

ALSO IN THIS ISSUE:
  • Do You Know What Time It Is?
  • “Green” Tower Lights Are a Viable Option
  • Receivers in a Box on the Roof

The post Inside the Dec. 11 Issue of RW Engineering Extra appeared first on Radio World.

RW Staff

Green Tower Lights Are a Viable Option

Radio World
5 years 5 months ago
Getty Images/Gian Carlo Ampie/EyeEm

Some of my earliest childhood memories are of car trips that we took, usually at night, between our home in the Texas panhandle and Dallas, where my older sister and later my brother lived. And I remember seeing those vertical stacks of red lights, some of which were flashing, and wondering what they were. “Those are radio towers,” or something to that effect, was my dad’s response.

Of course, at the time, I had no idea what radio towers even were or why they had to be adorned by those red flashing lights, but I thought they were pretty cool. Then, when I started at my first job in radio, there was a whole array of towers with flashing red lights right outside the back door. At that job, I had no responsibility for those lights, but I did know what they were for and if my job were at a non-directional station, what my responsibilities for them would be as a Third-Class Radiotelephone Operator licensee (with Broadcast Endorsement, of course).

That first radio gig was pretty much a summer job, and I landed a job at an FM station across town when it was done. That FM was located at the base of an 800-foot tower, and I worked 4 p.m. to midnight six days a week, which meant that I had to make the daily visual observation of the tower lights and faithfully enter into the operating log, “Tower lights are on and flashing.”

It was kind of a cool thing, standing in the dark at the base of that tower, listening to the ever-present Texas wind howling through the angle iron and guy wires and looking up at those red lights. The top beacon illuminated the “crow’s nest” above the top plate and beacon, and the tower had enough cross section that I could really see it and wonder what it was (I later climbed up there and saw it, the huge Huey & Phillips beacon and side marker fixtures up close).

A MYSTERIOUS BOX

The station signed off at midnight — there were few people out of bed after midnight in Amarillo, Texas, in those days, and of those that were, few had FM radios.

When the filaments and all the blowers shut off, I could hear a rhythmic grinding noise coming from the back wall. There was a mysterious electrical box of some sort that contained a motor, a cam and a pair of black bulbs with wires coming out of them. Up and down those bulbs went, one coming down as the other went up. I had discovered the tower light controls and mechanical flasher unit.

The KBRT LED tower lights are so efficient that we could run them off a single 300-watt solar panel and a deep-cycle battery.

For decades after that, I found similar setups at tower sites all over. Even when we bought new towers in the 1990s, tower lights and tower light controls were very much the same. They used the same pairs of 620-watt bulbs in the beacons, the same 110-watt lamps in the markers; and they used some kind of mechanical device to produce the flash, although mechanical contacts were used rather than mercury switches by then.

Over those decades, tower lights were always a pain in the backside. It seemed like I could never keep the lights all working for long — bulbs burned out, flashers developed mechanical issues and the constant vibration on the towers would cause wiring to chafe and occasionally short out. Then when solid-state flashers entered the scene, they were prone to failure, either from lightning or overheating. We would buy them by the case.

A FLASH IN THE DARK

Somewhere back in time, we began to see strobes come into use for some towers, usually with reduced intensity at night. We had (and still have) a tower in suburban Chicago that is 450 feet high and free-standing. It cost a fortune to paint, and we had to paint it every three or four years, so as soon as the FAA lighting standards would permit, I filed to change it from red lights and paint to a dual system with medium intensity white strobes during the day and red lights at night. While we no longer had to paint the tower after that change, those tower lights were a chore to keep working. It was always something with that high-voltage gas-tube system.

Sometime later, a few manufacturers began producing direct replacement LED red beacons and marker lights. These fixtures included integral 120-volt AC power supplies, so the existing 120-VAC wiring, power and flashers could be used with them. They weren’t cheap, but with the promise of much longer bulb life, we went down that road at a lot of sites, with mixed results. At some, we had no problems and the retrofit LED beacons and markers that we installed are still working after many years. At others, we had quite a bit of trouble and any power and bulb replacement savings was quickly consumed by repair costs.

In 2012, we built a four-tower 50 kW directional array for KBRT near Los Angeles, way up on a mountaintop with the L.A. Basin below to the west and the Inland Empire some 3,000 feet below to the east. The marking and lighting for that site were very much in question for all kinds of reasons. First was for air safety and obstruction marking. Then there was the question of light pollution — how much would the various lighting options contribute to light pollution above the skyline of the Santa Ana Mountains? And then there was the question of migratory (and other) bird attraction to the lights.

ENTER LED LIGHTING

After much study, we opted to install red LED lights on the four towers, lights with tightly-focused beams that would confine the light projection to the horizon plus or minus a few degrees. That seemed to satisfy everyone, but I had my doubts that an LED tower lighting system that operated on low DC voltage would be reliable with 50 kW of medium-wave RF present. But to my amazement, I had nothing to fear. The lights worked fine, and we have not experienced a single failure to date. Their power consumption was so low that I was able to run the tower lights off solar panels and deep-cycle marine batteries for a couple of months after the towers went up but before we had commercial power at the site.

Today’s LED tower light controllers are a far cry from the motor, cam and mercury switch mechanical controllers of old.

Since then, I’ve become a believer in LED tower light systems (and I’m speaking here of DC-powered LED systems, not hybrid or retrofit systems). I have been converting some of our oldest towers to new-technology systems. It’s amazingly easy. Beacons fit the bolt hole patterns of a code incandescent beacon, and all new wiring employing UV-rated SO cable is used to connect everything up.

A couple of years ago, the FAA began allowing the use of dual white/red systems on towers under 700 feet high, and that encompasses most of the towers in my company. It means that we can, in many cases, convert to dual red/white systems and (if the towers are galvanized) forget about painting forever. And don’t forget about the power savings, which can be significant on taller structures and multi-tower arrays.

So, the next time you find yourself troubleshooting a tower light issue … or relamping … or replacing a solid-state or mechanical flasher … consider making the move to new technology LED tower lighting. It’s the green (or maybe red) thing to do.

Cris Alexander, CPBE, AMD, DRB, is director of engineering of Crawford Broadcasting Co. and technical editor of RW Engineering Extra.

The post Green Tower Lights Are a Viable Option appeared first on Radio World.

Cris Alexander

Fundraiser Will Benefit Constantine Lyons, Age 7

Radio World
5 years 5 months ago

The family of the recently deceased John Lyons has set up a GoFundMe account to help with the costs of education for his 7-year-old son.

[John Lyons Dies; Helped Shape N.Y. Skyline]

Lyons died unexpectedly the day after Thanksgiving. In addition to his wife Natasha and adult son Matthew, his family includes 7-year-old Constantine.

“In lieu of flowers, donations for Constantine Lyons’ education, extracurricular and other school-related needs to help support him as he grows will be greatly appreciated,” stated his obituary. As of Wednesday the site had raised about $5,000.

Find info here.

 

The post Fundraiser Will Benefit Constantine Lyons, Age 7 appeared first on Radio World.

Paul McLane

NATE Election Results Are In

Radio World
5 years 5 months ago

The National Association of Tower Erectors has elected its new board of directors. Four board members will retain their seats, and the fifth will be occupied by Jessica Cobb, the association announced this week. The two-year terms are effective Feb. 16.

Cobb is CEO of MDTS in Ortonville, Mich. She is a current board member of the Michigan Wireless Association and also serves on the NATE Member Services Committee and as a member of the Women of NATE Committee.

The returning board members are MillerCo President Jimmy Miller, Tower & Turbine Technologies LLC President John Paul Jones, Millennia Contracting President Kevin Dougherty and Lee Antenna & Line Service President Bryan Lee.

“Looking ahead to 2020, the NATE board of directors will be governing during a very exciting and dynamic time in the industry that offers enormous potential to position the association for future growth and influence,” NATE Chief Operating Officer Paula Nurnberg said in the announcement.

The post NATE Election Results Are In appeared first on Radio World.

RW Staff

Cambridge Consultants Unveil Prototype for Low-Cost DRM Receiver

Radio World
5 years 5 months ago

Cambridge Consultants has unveiled a design for a Digital Radio Mondiale receiver that it claims will cost under US$10 (about €9).

At its annual Innovation Day conference last week, the firm showcased a prototype of the low-cost, low-power DRM design.

This, according to the company, addresses the vital need for information by the global population that doesn’t have the internet or TV, adding that since it is low power, it can run from solar or wind-up.

Cambridge Consultants say the design will be ready in 2020, available for any radio manufacturer to license and incorporate into their own products.

Ruxandra Obreja

DRM Chairman, Ruxandra Obreja said she welcomes the announcement.

“The unique and inspiring design will finally lead to the development of a low-power, low-cost, small-screen, large-coverage receiver. This means we’ll be able to bridge the digital divide for millions of people who don’t have easy access to broadband.”

 

The post Cambridge Consultants Unveil Prototype for Low-Cost DRM Receiver appeared first on Radio World.

Marguerite Clark

Pagination

  • First page « First
  • Previous page ‹ Previous
  • …
  • Page 1034
  • Page 1035
  • Page 1036
  • Page 1037
  • Current page 1038
  • Page 1039
  • Page 1040
  • Page 1041
  • Page 1042
  • …
  • Next page Next ›
  • Last page Last »

REC Essentials

  • FCC.TODAY
  • FCCdata.org
  • myLPFM Station Management
  • REC site map

The More You Know...

  • Unlicensed Broadcasting
  • Class D Stations for Alaska
  • Broadcasting in Japan
  • Our Jingles

Other REC sites

  • J1 Radio
  • REC Delmarva FM
  • Japan Earthquake Information
  • API for developers

But wait, there's more!

  • Join NFCB
  • Pacifica Network
  • LPFM Wiki
  • Report a bug with an REC system

Copyright © REC Networks - All Rights Reserved
EU cookie policy

Please show your support by using the Ko-Fi link at the bottom of the page. Thank you for supporting REC's efforts!